Learning traversability models for autonomous mobile vehicles

نویسندگان

  • Michael Shneier
  • Tommy Chang
  • Tsai Hong
  • William P. Shackleford
  • Roger Bostelman
  • James S. Albus
چکیده

Autonomous mobile robots need to adapt their behavior to the terrain over which they drive, and to predict the traversability of the terrain so that they can effectively plan their paths. Such robots usually make use of a set of sensors to investigate the terrain around them and build up an internal representation that enable them to navigate. This paper addresses the question of how to use sensor data to learn properties of the environment and use this knowledge to predict which regions of the environment are traversable. The approach makes use of sensed information from range sensors (stereo or ladar), color cameras, and the vehicle’s navigation sensors. Models of terrain regions are learned from subsets of pixels that are selected by projection into a local occupancy grid. The models include color and texture and traversability information obtained from an analysis of the range data associated with the pixels. The models are learned entirely without supervision, deriving their properties from the geometry and the appearance of the scene. The models are used to classify color images and assign traversability costs to regions. The classification does not use the range or position information, but only color images. Traversability determined during the model-building phase is stored in the models. This enables classification of regions beyond the range of stereo or ladar using the information in the color images. The paper describes how the models are constructed and maintained, how they are used to classify image regions, and how the system adapts to changing environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of a Terrain Traversability Learning Algorithm in The DARPA LAGR Program

The Defense Applied Research Projects Agency (DARPA) Learning Applied to Ground Vehicles (LAGR) program aims to develop algorithms for autonomous vehicle navigation that learn how to operate in complex terrain. For the LAGR program, The National Institute of Standards and Technology (NIST) has embedded learning into a control system architecture called 4D/RCS to enable the small robot used in t...

متن کامل

Traversability: A Case Study for Learning and Perceiving Affordances in Robots

The concept of affordances, introduced by J.J. Gibson in Psychology, has recently attracted interest in autonomous robotics towards the development of cognitive systems. In earlier work (Şahin et al., Adaptive Behavior, vol.15(4), pp. 447-472, 2007), we reviewed the uses of this concept in different fields and proposed a formalism to use affordances at different levels of robot control. In this...

متن کامل

Image Feature-based Traversability Analysis for Mobile Robot Navigation in Outdoor Environment

For an autonomous mobile robot, an important task to accomplish while maneuvering in outdoor rugged environments is terrain traversability analyzing. Due to the large variety of terrain, a general representation cannot be obtained a priori. Thus, the ability to determine the traversability based on the vehicle motion information and its environments is necessary, and more likely to enable acces...

متن کامل

Learning for Autonomous Navigation: Extrapolating from Underfoot to the Far Field

Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter. Enabling robots to learn from experience may alleviate bo...

متن کامل

Learning for Autonomous Navigation

Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter. Enabling robots to learn from experience may alleviate bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Auton. Robots

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2008